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Abstract

Technological change and deregulation have caused a major
restructuring of the telecommunications equipment industry over the
last two decades.  We estimate the parameters of a production
function for the equipment industry and then use those estimates to
analyze the evolution of plant-level productivity over this period.
The restructuring involved significant entry and exit and large
changes in the sizes of incumbents.  Since firms choices on whether
to liquidate and the on the quantities of inputs demanded should
they continue depend on their productivity, we develop an
estimation algorithm that takes into account the relationship
between productivity on the one hand, and both input demand and
survival on the other.  The algorithm is guided by a dynamic
equilibrium model that generates the exit and input demand
equations needed to correct for the simultaneity and selection
problems.  A fully parametric estimation algorithm based on these
decision rules would be both computationally burdensome and require
a host of auxiliary assumptions.  So we develop a semiparametric
technique which is both consistent with a quite general version of
the theoretical framework and easy to use.

The algorithm produces markedly different estimates of both
production function parameters and of productivity movements than
traditional estimation procedures.  We find an increase in the rate
of industry productivity growth after deregulation.  This in spite
of the fact that there was no increase in the average of the
plants' rates of productivity growth, and there was actually a fall
in our index of the efficiency of the allocation of variable
factors conditional on the existing distribution of fixed factors.
Deregulation was, however, followed by a reallocation of capital
towards more productive establishments (by a down sizing, often
shutdown, of unproductive plants and by a disproportionate growth
of productive establishments) which more than offset the other
factors' negative impacts on aggregate productivity.
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There has been a major restructuring of the U.S.

telecommunications equipment industry over the last two decades,

and it can be explained, in large part, by a combination of two

related factors.  One was technological change which led to the

development of many new products (eg. digital switching equipment

and fiber optics).  The other factor was a gradual liberalization

of the regulatory environment (in both the provision of

telecommunication services and in the use of telecommunications

equipment) which culminated in the divestiture of AT&T in January

of 1984.  Together these changes provided many new firms, both

domestic and foreign, an opportunity to enter the industry, and

caused dramatic changes in the productivity of incumbents.  This

paper estimates the parameters of a production function for the

equipment industry, and then uses those estimates to analyze

changes that occurred in distribution of plant-level performance

from 1974 to 1987, paying particular attention to the impact of

the regulatory and technological changes on aggregate

productivity.  In doing so we provide both a micro framework for

empirically analyzing the impact of policy (and/or environmental)

changes on productivity, and an estimator for production function

parameters that is consistent with a behavioral model which

enables a more detailed analysis of changes in industry structure

and performance.

The empirical analysis is based on an extremely rich, plant-

level panel constructed from data collected by the U.S. Bureau of
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the Census.  It is clear from the data that during the period

under investigation, the restructuring of the industry included

significant entry and exit, and large changes in the size of

continuing establishments.  It is worth noting that related

empirical work indicates that it is not uncommon to find

manufacturing industries with entry, exit, and gross flow rates

similar to those found in our data (this work dates back at least

to Wedervang, 1965; for more recent analyses see Baldwin and

Gorecki, 1988, Dunne, Roberts, and Samuelson, 1988, and Davis and

Haltiwanger, 1990).

The restructuring does however highlight two estimation

problems.  If firms' choices on whether or not to liquidate, and

on the quantities of inputs demanded should they continue, depend

on productivity movements (and as we show below the data indicate

that they do), the algorithm designed to estimate the parameters

of the production function should take into account the

relationship between productivity, on the one hand, and both

survival and input demands, on the other.  To guide us in

building such an algorithm we introduce a dynamic model of firm

behavior that allows for firm-specific sources of efficiency that

evolve over time, and for entry and exit.

From the standpoint of estimation, the theoretical model

provides us with a strategy for controlling for both the problem

of self-selection induced by liquidation, and for the

simultaneity induced by the endogeneity of the input choices (the
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latter being a problem that dates back at least to the classic

work of Marschak and Andrews, 1944).  Direct implementation of

the theoretical solution to these problems would be both

computationally burdensome, and require a host of auxiliary

(largely functional form) assumptions.  So we develop a

semiparametric estimation technique which is both consistent with

a quite general version of the theoretical framework, and easy to

use.

The remainder of this introduction provides a short summary

of our findings.  First, the theory implies that failure to

control for the selection and simultaneity problems should

generate very particular biases in traditional estimates of the

production function parameters (biases that can explain familiar

anomalies in these estimates).  The empirical results verify

these biases, and show that they can be very large.  Indeed, in

our particular case the corrected estimate of the capital

coefficient is more than double that obtained through traditional

estimation procedures, the corrected estimate of the labor

coefficient is over thirty percent lower.  The corrections also

generate a noticeably different time path for aggregate

productivity.  The theory implies positive biases in the

traditional productivity figures, and we find, in our data, the

average annual bias in these figures was over a hundred percent

(and the bias varied significantly from sub period to sub

period).
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The corrected time path for productivity still shows a

doubling in the rate of aggregate industry productivity growth in

the post-1984 period; from an average of .65% per year from 1974

to 1983 inclusive, to 1.2% per year from 1984 to 1987.  Part of

the advantage of the micro framework is that, by allowing us to

disaggregate, it allows us to search for the sources of this

change in productivity growth.

We show first that the increase in aggregate productivity

does not seem to be the result of a more efficient allocation of

variable factors conditional on the existing distribution of

state variables among plants (the joint distribution of capital,

productivity, and age).  We define an index of variable factor

allocative efficiency as the ratio of the minimum variable cost

of producing the observed industry output conditional on the

existing distribution of state variables, to actual variable cost

of production.  We find that this index actually falls in the

period after deregulation.  Note however, that since we expect a

near monopoly to allocate production among plants to minimize the

total cost of production, but do not expect such behavior from

say, Nash competitors, we should not be too surprised by this

finding.  On the other hand, it imply that the increase in the

growth rate of industry productivity that followed deregulation

came from either a reallocation of fixed inputs to more

productive enterprises, or from an increase in the average of

plant-level rates of productivity growth.
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To investigate these possibilities further we show that one

can decompose the index of aggregate productivity into a sum of

two terms.  The first is the (unweighted) average of the

productivities of the active plants, and the second is the plant-

level covariance of output and productivity.  The higher the

covariance, the more efficient the allocation of output

conditional on the plant-level distribution of productivities

(i.e. allowing capital to be mobile).  There is no evidence of

the average productivity of the plants in the sample increasing

faster in the post-1984 period.  The realized productivity gains

seem to be entirely a result of a reallocation of output to more

productive plants.  We already noted that this was not a result

of a more variable factors being allocated to firms whose

capital-productivity combinations warranted it.  Apparently the

increased competition brought with it a dramatic shift in the

allocation of capital towards the more productive plants.  This

tendency is verified by computing movements in the correlation of

capital and productivity over the period, and by analyzing the

relationship between shutdown frequencies, on the one hand, and

capital, age, and productivity, on the other.  It was a result of

both a down sizing (frequently the shutdown) of (often older)

unproductive plants, and the disproportionate growth of

productive establishments (often new entrants).

Note that the "industry's" response to the changes in its

environment was a complicated dynamic process involving capital
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expansion in some plants, contraction in others, and large

amounts of entry and exit.  A more detailed analysis of either

how different primitives affected this process, or of the

processes' implications on say, welfare, or on gross job flows,

would require both further details on the industry (details that

are currently buried in the nonparametric part of our

specification), and an algorithm capable of computing the

implications of the equilibrium framework that underlies our

estimation technique (see Pakes and McGuire, 1991, for an example

of such an algorithm).

What does seem to be clear, however, is that there were

large differences among plants in their efficiency in generating

sales from capital and labor expenditures and that these

differences in their sales generating abilities (which we label

productivity) were an important determinant of how the plants

fared as a result of the regulatory and technological changes of

the period.  Moreover it was largely the differences in how

plants of different productivities fared that determined the

changes in aggregate industry performance over this period.  It

follows that to analyze the processes that the data singled out

as being important could not (for the most part) be analyzed with

aggregate data, or even with balanced panels (panels which do not

include information on entrants, or on firms which eventually

exit).

The first section of the paper provides a brief history of
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the telecommunications equipment industry and documents some of

the relevant changes in the regulatory structure.  It also

presents an overview of the data used in the analysis.  Section 2

summarizes the theoretical model used to guide estimation, while

section 3 provides the estimation algorithm and presents the

parameter estimates.  Section 4 uses our estimates to analyze the

evolution of industry level productivity and compares the results

implied by our procedures to those obtained from more traditional

methods of analysis.  We conclude with two caveats on the

interpretation of our results.  Two appendices follow.  The first

discusses the data, and the second provides the variance

covariance matrix of our parameter estimates.

I OVERVIEW OF THE INDUSTRY

We begin with a brief review of recent developments in the

telecommunications industry.  This will both help to focus the

subsequent modelling exercise, and enable us to obtain a deeper

understanding of the empirical results.

Beginning in the early 1970's, the telecommunications

industry entered into a period of rapid change.  The changes were

a result of a combination of significant technological

developments in telecommunications equipment and a gradual

liberalization of the regulatory environment governing the

provision of telecommunications services.  Together these

developments have led to a substantial restructuring of the



      See Brock (1981), p.234.1

      Office of Telecommunications (1986), p.23.  Also see NTIA (1988) pp.322-323.2
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competitive environment in the U.S. telecommunications equipment

industry.  For the purposes of this study, we include in our

definition of the industry practically all types of customer

premise, and network telecommunications equipment, with the

exception of the various types of transmission media, including

copper wire, coaxial cable, and glass fiber (for details see the

appendix).

For most of the twentieth century, American Telephone and

Telegraph (AT&T) maintained an exclusive monopoly in the

provision of telecommunications services and, through their

procurement practices, extended that dominant position into the

equipment industry.   This position was achieved initially by1

having control of the telephone patent, but AT&T's dominance in

the equipment market was maintained by the requirement that any

equipment that was attached to the Bell system network had to be

supplied by AT&T itself.  Prior to the AT&T divestiture, Western

Electric, AT&T's manufacturing subsidiary, supplied approximately

90% of AT&T's equipment purchases.   Given the fact that AT&T was2

by far the largest purchaser of telecommunications equipment,

entry into the equipment market was effectively prohibited.

At the manufacturing level, barriers to entry seemed to be



      See Brock (1981), p.235, and Temin who writes "there does not seem now nor has there been in the3

past an economic argument explaining why competition could not exist in the sale of telecommunications
equipment," Temin (1987), p.335.

      This is evidenced by the fact that in 1982 the Census of Manufactures published for the first time the4

four-firm concentration ratio for SIC 3661, Telephone and Telegraph Apparatus.  In previous years this number
had been suppressed for disclosure purposes.  See also NTIA (1988) pp. 305-350, and Temin (1987) for
discussion of developments in the equipment industry.
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no greater than in other electrical appliance industries.   The3

effective barrier to entry came from restrictions in the market

for users of the equipment.  An end-user could not legally attach

a telephone set, or any other piece of terminal equipment, to the

public network.  This, together with the fact that AT&T purchased

equipment almost solely from Western Electric, meant that the

only method of entry into the private equipment market was to

establish a telephone company, a strategy that was generally

prohibited by state regulatory authorities.  As a result, Western

Electric was relatively free from competitive pressures in the

equipment market.

In recent years however, Western Electric's dominance in the

equipment market has faded.   This is partially a result of the4

transition from electromechanical to fully electronic technology

in both the switching and transmission of signals, a shift that

has opened up many new markets for telecommunications equipment

(fiber optics, digital switches, facsimile machines...).  At the

same time, changes in the regulatory structure governing the

telecommunications industry has provided new firms the

opportunity to enter the equipment industry.  We turn now to a



      There were, for example, only four PBX manufacturers in 1969, but there were over thirty of them5

by 1980 (National Academy of Engineering, 1984, p.86).
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brief review of the timing of these regulatory changes.

One of the first important decisions in the trend to

allowing increased competition in the telecommunications

equipment industry was the 'Carterphone' decision of 1968.  In

that case, the Carter Electronics Company won an antitrust suit

against AT&T after AT&T had prevented Carter from connecting a

private two-way radio system to the network.  The Carterphone

decision, and subsequent rulings by the Federal Communications

Commission (FCC) in support of the decision, paved the way for

the interconnection of private equipment to the public network.

The conditions restricting entry into the telecommunications

equipment market were further eroded in 1975 when the FCC

established a registration and certification program to allow for

the connection of private subscriber equipment to the network, in

effect extending the Carterphone decision to all equipment that

met FCC standards.  By 1978, the program had been extended to

include PBX's, key telephone sets, and telephones.  Thus the tie

between the telephone service providers and the equipment

industry had finally been broken.

The result of these changes was sustained entry into the

U.S. telecommunications equipment industry between 1967 and

1987.   There was a surge in entry that began in the late 1960's5

and continued into the 1970's, as many small firms sought to take
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advantage of the Carterphone decision and the markets that opened

up as a result of the registration and certification program. 

Table 1 documents this fact (for more details in the construction

of the database used in this and subsequent tables see Appendix 1

and Olley, 1991).  Between 1967 and 1972 both the number of

plants and the number of firms in the industry almost doubles

and, as the table shows, there was also substantial entry between

all subsequent censuses.

Table 1

Characteristics of the Data

Year Plants Firms Shipments
(billions
current $)

Shipments
(billions
1982 $)

Employment

1963 133 104 2.587 5.865 136899

1967 164 131 3.618 8.179 162402

1972 302 240 6.222 11.173 192248

1977 405 333 11.138 13.468 192259

1982 473 375 20.319 20.319 222058

1987 584 481 25.500 22.413 184178

Though by 1982 the regulatory environment had changed

significantly, AT&T still remained the largest service provider

in the United States and, as a result, the largest purchaser of

telecommunications equipment.  Consequently, as long as AT&T

continued its practice of buying most of its equipment from its
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manufacturing subsidiary, Western Electric maintained a dominant

position in the equipment industry, even in the face of the

changes in the regulatory environment.  The 1982 Consent Decree

changed this situation dramatically.  The agreement, which was

signed in January 1982 and implemented in January 1984, called

for the divestiture of AT&T's regional operating companies.  The

seven regional Bell operating companies (RBOC) that were created

from the Consent Decree are all very large companies in their own

right.  For our study of the telecommunications equipment

industry it is important to note that as a result of divestiture

the RBOC's are now free to purchase equipment from any supplier

they choose, although they are prohibited from manufacturing

equipment themselves.  The effect of the Consent Decree on the

purchases of equipment by Bell system companies is illustrated

rather dramatically in Table 2.

Table 2

Bell Company Equipment Procurement
(percent purchased from Western Electric)

1982 1983 1984 1985 1986E

92.0 80.0 71.8 64.2 57.6

E - Estimated for 1986
Source: NTIA (1988) p. 336, and discussion pp.
335-37.



      See U.S. Industrial Outlook, various years.  The largest of the foreign suppliers include the Canadian6

firms of Northern Telecom and Mitel, Siemens from West Germany, Ericsson from Sweden, and the Japanese
firms of NEC, ATI/Fujitsu, Oki, and Hitachi.
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Table 1 only tells part of the entire story.  In addition to

generating increased competition from U.S. manufacturers, the

regulatory changes also induced growing competition from several

large foreign producers.  In both 1972 and 1977 imports accounted

for only 2% of new supply, and even by 1982 that share had only

reached 4%.  However, the share of imports to new supply rose

steadily from 1982 onwards.  By 1987 imports make up fully 14% of

new supply.   Note also that the increase in the share of imports6

can account for a large part of the observed fall in domestic

employment between 1982 and 1987 observed in Table 1.  Of course

the import figures understate the share of the U.S. domestic

market that the foreign suppliers were able to capture, since

many of the foreign owned suppliers have established

manufacturing facilities in the U.S.

Table 3 provides an indication of the overall importance of

the entry process (at least in terms of domestic production).  It

lists the absolute number of new plants and new firms since 1972

(and since 1982), that are still active in 1987; the new plants

and new firms as a percent of the total number of plants and

firms active in 1987; and the shares of the new plants and the

new firms in both the shipments and the employment of 1987. 

Almost 90% of the firms, and 80% of the plants, active in 1987



      About 400 of the 419 new entrants were "de novo" new entrants; that is they enter by opening a new7

plants or by transferring an existing plant into the industry.  The de novo new entrants were, however, smaller
in 1987 since they accounted for only 18.4% of 1987 shipments and 23.5% of employment.
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entered since 1972 and the new entities accounted for over 30% of

shipments and almost 40% of employment.  Indeed many of the new

entrants entered after 1982 (though, as one should expect, the

later entrants tended to be smaller as of 1987).7

Table 3:  Entrants Active in 1987

Number Share of
Number

Active in
1987 (%)

Share of
1987

Shipments
(%)

Share of
1987

Employment
(%)

Plants:
New since

1972

463 79.0 32.8 36.0

Firms: New
since 1972

419 87.0 30.0 41.4

Plants:
New since

1982

306 52.0 12.0 13.5

Firms: New
since 1982

299 60.1 19.4 27.5

Table 4 provides an indication of the importance of the exit

or liquidation process.  It provides: the fraction of plants

(firms) that were active in 1972 (1982) but did not survive until

1987; the share of these entities in 1972 shipments; and their



      There is a question of the extent to which the changes that occurred in the telecommunications8

equipment industry during this period induced more entry and exit (and in general more "churning") than one
would typically find in a manufacturing industry.  Baldwin and Gorecki, 1989, provide entry and exit figures
for four digit Canadian manufacturing industries which are built from a plant level panel comparable to ours. 
Their figures are for a ten (rather than fifteen) year period, but when we multiply the figures they obtain as
averages over all four digit industries by 3/2 to make them comparable to the figures in Tables 3 and 4 we
obtain numbers for the shares of employment in new plants and firms, and the shares of employment in plants
and firms that eventually exit, that are very close to ours.  On the other hand, their figures for the fraction of
firms that are new, and the fraction of firms initially active that eventually exit, are smaller than the analogous
numbers in our tables.  For a recent review of the empirical literature on entry and exit see Geroski, 1991.
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share of 1972 employment.  60% (70%) of the plants (firms) that

were active in 1972 did not survive until 1987 and these plants

(firms) accounted for 40.2% (13.8%) of 1972 employment and 39%

(12.1%) of 1972 shipments.  Indeed, over 40% of the plants that

were active in 1982 did not survive until 1987, and these plants

produced about 25% of 1982 output.8

Table 4:  Incumbents Exiting By 1987

Number
Share of
Number

Active in
Base Year

Share of
Shipments
in Base
Year (%)

Share of
Employment
in Base
Year (%)

Plants active in
1972 but not in 1987

181 60.0 40.2 39.0

Firms active in 1972
but not in 1987

169 70.0 13.8 12.1

Plants active in
1982 but not in 1987

195 41.2 26.0 24.1

Firms active in 1982
but not in 1987

184 49.1 17.3 16.1
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Our goal in this paper is to analyze the changes in the

efficiency of production and in the distribution of productivity

that accompanied the changes in the regulatory and technological

environment outlined in the beginning of this section.  To do so,

we need estimates of production function parameters.  The tables

in this section show that the changes in the environment were

accompanied by a great deal of entry and exit, as well as

significant movement in the relative sizes of the continuing

establishments.  These changes in size were, as one might expect,

accompanied by changes in input demand, while, as we show below,

a major determinant of whether or not a plant exits is its

productivity.  Given that a firm's productivity is not directly

observable, the fact that exit and input demand decisions are

based on it, generates both a selection and a simultaneity

problem in obtaining production function estimates.  To account

for their impacts we need a model which determines both when exit

occurs and how input decisions are made; a model that is rich

enough to allow for firm specific, or idiosyncratic, sources of

change and the equilibrating forces of entry and exit.  We now

turn to the task of outlining such a model.

II THE BEHAVIORAL FRAMEWORK

In obtaining estimates of the production function parameters

we are confronted with two interrelated problems.  First, to the

extent that differences in efficiency are known to firms when
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they choose their inputs, and as we show below the efficiency of

a given firm is highly correlated over time, our attempts to

estimate production function parameters will be hindered by the

classic simultaneity problem analyzed by Marschak and Andrews

(1944).

Second, as noted above, the restructuring of the

telecommunications equipment industry during the period under

study was accompanied by a great deal of entry and exit.  This

generates the issue of how to handle attrition from, and

additions to, the data during the period under study. 

Traditional solutions to this problem restrict the analysis to a

"balanced" panel, studying only those firms that were present

over the entire sample period.  However, if a firm's exit

decisions are made, at least in part, on the basis of their

perceptions of their productivity in the future, and if their

perceptions of their future productivity are partially determined

by realizations of their current productivity, then by

considering only those firms who survive the entire period we

will be considering a sample selected, in part, on the basis of

the unobserved productivity realizations.  This in turn will

generate a selection bias of a very particular form in both the

traditional estimates of the production function parameters and

in the subsequent analysis of productivity.

To analyze either of these two problems, we need a more

detailed dynamic model of firm behavior that allows for firm-



      Starting with Marschak and Andrews (1944), there is a long history of articles that recognize that one9

cannot evaluate alternative estimates of production function parameters without a structural model of firm
behavior.  Griliches, for example, writes "It is harder to make an adequate allowance for the simultaneity
problem without constructing a complete production and input decision behavior model." [Griliches, 1967, pp.
277-278].  Our approach differs somewhat from the previous literature in that we use a model which is explicitly
dynamic and incorporates a notion of equilibrium among firms.  This allows us to account for both the changes in
incumbent behavior over time and for the entry and exit observed in panel data sets.
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specific efficiency differences that exhibit idiosyncratic

changes over time.   To sort out the simultaneity problem, the9

model must specify the information available when input decisions

are made.  To enable us to control for the selection induced by

liquidation decisions, the model must generate an exit rule.

There are several models that allow for idiosyncratic

uncertainty and entry and exit that are now available (see

Ericson and Pakes, 1989, Hopenhayn and Rogerson, 1989, Jovanovic,

1982, and Lambson, forthcoming).  The model used here combines

certain features of the Ericson-Pakes model and the Hopenhayn-

Rogerson model.  We now present a brief summary of the aspects of

those models we need in order to derive the input demand and the

liquidation rules.

As in Ericson and Pakes (1989), we assume that current

profits are a function of a vector of firm-specific state

variables and a counting measure which simply lists the vector of

state variables of all the firms' active competitors (we shall

refer to this counting measure as the market structure).  In our

example, the vector of state variables consists of a , the age oft

the firm, k , the firm's capital stock, and T , an index of thet t
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firm's efficiency; so a market structure consists of a list of

these triples for all active firms.

At the beginning of every period an incumbent firm has three

decisions to make.  The first is to decide whether to exit or

continue in operation.  If it exits, it receives a sell-off value

of M dollars and never reappears again.  If it continues in

operation, it chooses variable factors (labor) which, together

with the beginning period values for its state variables and,

possibly, a realization of a productivity shock, determine

current profits.  In addition, the firm chooses a level of

investment, which together with the current capital value,

determines the capital stock at the beginning of the next period.

We make the following assumptions on the evolution of the

state variables.  The accumulation equations for capital and age

are given by

k  = (1!*)k  + i  , (1)t+1 t t

and

a  = a  + 1, (2)t+1 t

both of which hold with probability one.  As in Hopenhayn and

Rogerson (1990), the index of productivity, T, is assumed to be

known to the firm and to evolve over time according to an

exogenous Markov process.  That is the distribution of T  ist+1



      The Ericson-Pakes (1989) model has the distribution of T  conditional on past history dependent10
t+1

on the amount of investment in R&D, as well as on T .  Unfortunately we do not have the detail on the R&Dt

data that would make their model easy to estimate.
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determined by a family of distribution functions10

P  = { P(@*T) , T,S } . (3)T

The firm is assumed to maximize the expected discounted

value of future net cash flows.  Therefore, both the exit

decision and the investment decision will depend on the firm's

perceptions of the distribution of future market structures given

the current information.  The investment, entry, and exit

decisions generated by these perceptions will, in turn, generate

an actual distribution for the counting measure providing the

market structure in future years.  Below we simply assume the

existence of a Markov Perfect Nash equilibrium in investment

strategies ! an equilibrium where firms' perceptions of the

distribution of future market structures are in fact consistent

with the objective distribution of market structures that the

firms' choices generate ! and then use the investment and

liquidation rules that result from this equilibrium to help

structure estimation.

In this setting, the Bellman equation for an incumbent firm

can be written as,
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V (T ,a ,k ) = max { M,  sup  B (T ,a ,k )!c(i ) + $E[V (T ,a ,k )*J  } (4)t t t t t t t t t t+1 t+1 t+1 t+1 t

       i $0t

where B (@) is the restricted profit function giving currentt

period profits as a function of the vector of state variables,

c(i ) is the cost of current investment i , $ is the firm'st t

discount factor, and J  represents information available at timet

t.  If M is greater than the second argument after the max

operator the firm exits.

Note that both the value function V(@), and the profit

function B(@), are indexed by t.  This is to save notation.  Were

we to write out either of these functions we would find that they

depend on both the market structure in the current period and on

factor prices (see Pakes and McGuire, 1990).  Though these are

assumed not to vary among firms in a given period, they are free

to vary across periods, and this generates the need for the t

index on the profit and value functions (and on the policy

functions that we now derive from them).

The max operator indicates that a firm compares the sell-off

value of its plant (M) to the expected discounted returns of

staying in business until next period.  If current productivity

is so low that expected profits in the future do not make

continuing in operation worthwhile, the firm closes down the

plant.  If this is not the case the firm chooses an optimal

investment level (constrained to be non-negative).  The solution



      Though we maintain the Cobb-Douglas technology assumption throughout this paper, it is easy to11

generalize the estimation algorithm developed below to allow for more general production technologies; translog
with neutral efficiency differences across firms would, for example, do equally well.  The only real limitation of
the estimation algorithm is that it requires a technology that generates the invertibility condition used to go from
equation (6) to (8) below (at least for some known subset of the data).  This condition will be satisfied in the
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to this control problem generates an exit rule and an investment

demand function.  If we define the indicator function P  to bet

equal to zero if the firm exits, then the exit rule and the

investment demand equation are written, respectively, as

: 1 if T  $ T (a ,k )t t t tP  = ; (5)t < 0 otherwise

and

i  = i (T ,a ,k ) . (6)t t t t t

Note that the functions T  and i (@) are determined as partt t

of the Markov Perfect Nash equilibrium, and will generally depend

on all the parameters determining equilibrium behavior.  Also,

the fact that both these functions are indexed by t implies that

both the investment rule and the liquidation decision can depend

on the regulatory period (see below).

III ESTIMATION

We assume that the industry produces a homogeneous product

with Cobb-Douglas technology, and that the factors underlying

profitability differences among firms are neutral  efficiency

differences.   Therefore the production function is written as11



current framework provided the marginal productivity of capital is strictly increasing in T; see Pakes, 1991,
Section IV, for a more detailed exposition.
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y  = $  + $ a  + $ k  + $ l  + T  + 0  , (7)it 0 a it k it l it it it

where y  is the log of output (value added) from plant i at timeit

t, a  is its age, k  is the log of its capital input, l  is theit it it

log of its labor input, T  is its productivity , and 0  isit it

either measurement error (which can be serially correlated) or a

shock to productivity which is independent over time.  Here both

T and 0 are unobserved.  The distinction between them is that T

is a state variable in the firm's decision problem, and hence a

determinant of both liquidation and input demand decisions, while

0 is not.

Consider first the biases in the OLS estimates of (7) caused

by the problems of the endogeneity of the input demands and by

the self-selection induced by exit behavior.  The endogeneity

arises because current input choices are determined (in part) by

the firm's beliefs about likely values of T  when those inputsit

will be used.  As a result, if there is serial correlation in Tit

inputs in period t will be positively correlated with it, and an

OLS procedure that fails to take account of the unobserved

productivity differences will tend to provide upwardly biased

estimates of the input coefficients (moreover, we expect the more

variable inputs to be more highly correlated with current values

of T ; see Marschak and Andrews, 1944, and Griliches, 1957, forit



      The crucial part of the logic underlying the sign of these biases is that the difference between the12

value of continuing in operation and the sell off value of the firm be increasing in T and k, and decreasing in a. 
Provided this condition is met, it does not matter whether the sell off value is independent of k and a (which,
for simplicity, was the specification we used in our description of the behavioral model).  For similar reasons
the semiparametric techniques used in the estimation algorithm do not require the sell off value of the firm to be
independent of k and a.
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early, and more detailed, expositions).

Now consider the problem of self-selection induced by plant

closings.  Assuming, temporarily, that there are no variable

factors (the estimation algorithm has a preliminary step which

estimates their coefficients), the conditional expectation of yt

(conditional on current inputs, survival, and information

available at t!1), includes the term

E[T #a ,k ,T ,P =1] .t t t t!1 t

  Now recall that P =1 if and only if T >T (k ,a ).  Further it ist t t t t

straightforward to show that the value function (equation 4) is

increasing in k (and, if older firms are less productive

conditional on the current value of their capital stock,

decreasing in a).  This implies that T (@) is decreasing in kt

(increasing in a).  Firms with larger capital stocks can expect

larger future returns for any given level of current

productivity, and hence will continue in operation at lower T

realizations.  Thus, conditional on T  and observed inputs, thet!1

self-selection caused by exit behavior will cause the expectation

of T  to be decreasing in k (increasing in a), inducing at

negative bias in the capital coefficient (and a positive bias in

the age coefficient).12
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Labor is assumed to be the only variable factor (so its

choice can be affected by the current value of T ).  The otherit

two inputs, k  and a , are fixed factors and are only affectedit it

by the distribution of T  conditional on information at time t!1it

and past values of T.  In particular, recall that the solution

to the firm's optimization problem, (4), resulted in the

investment demand equation

i  = i (T ,a ,k ) . (6)t t t t t

That is investment at time t as a function of the values of the

three firm-specific state variables and market structure at time

t.

Assume that, provided i >0, (6) is strictly increasing in Tt

conditional on any value for the couple, (a ,k ).  Then (6) ist t

invertible on the set of values for (i ,a ,k ) for which i >0, andt t t t

for that set we can write

T  = h (i ,a ,k ) . (8)t t t t t

Since equation (8) allows us to express the unobservable

productivity variable T , as a function of observables, it willt

enable us to solve the simultaneity problem.  The invertibility

condition that lies behind it states that, conditional on a

particular value for the capital stock, firms with higher T will

invest more.  Regularity conditions which insure that this is

true for the current example are given in Pakes (1991, section

IV).

Now substitute (8) into equation (7) to obtain
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y  = $ l  + N (i ,a ,k ) + 0 (9)it l it t it it it it

where,

N (i ,a ,k ) = $  + $ a  + $ k  + h (i ,a ,k ) . (10)t it it it 0 a it k it t it it it

Below we use equation (9) and a nonparametric (series) estimator

of the function N(@) to estimate $ .  Note however, that thel

production function coefficients on capital and age, $  and $ ,a k

are not identified from this equation since the equation does not

allow us to separate out the effect of capital and age on the

investment decision from their effect on output.

To identify the age and capital coefficients we have to use

the panel structure of the data and the model's implications

regarding the relationship between the observed productivities of

a given firm over time.  Recall that we only observe the

subsequent year's data for those plants that survive, so in order

to proceed we need the probability of survival.  That probability

is given by

Pr{P =1*T (k ,a ),J } = Pr{T $T (k ,a )*T (k ,a ),T }t+1 t+1 t+1 t+1 t t+1 t+1 t+1 t+1 t+1 t+1 t+1 t

   = P {T (k ,a ),T } (11)t t+1 t+1 t+1 t

   / Pt

where we have dropped the dependence of the variables on the

individual subscript (i) for notational convenience.  Together,

the accumulation and the investment equations imply that both at+1
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and k  can be expressed as functions of the triple (T ,a ,k ) andt+1 t t t

T =h (i ,a ,k ).  So the probability in (11) can be expressed as at t t t t

time dependent function of i , a , and k .  Below we provide at t t

nonparametric estimators of this survival probability.

We complete the system to be estimated by considering

expectation y !$ l   conditional on inputs at time t+1 andt+1 l t+1

survival.  This equation, when combined with the estimates of $ ,l

N , and P , from (10) and (11) will allow us to identify $  andt t a

$ .  We have,k

E[y !$ l *a ,k , P =1]t+1 l t+1 t+1 t+1 t+1

= $  + $ a  + $ k  + E[T *T , P =1] (12)0 a t+1 k t+1 t+1 t t+1

    P(dT *T )t+1 t

= $  + $ a  + $ k  +  I   T  S))))))))Q0 a t+1 k t+1 t+1

       T   I P(dT *T )t+1 t+1 t

Tt+1

= $ a  + $ k  + g(P ,T )a t+1 k t+1 t t

where

   P(dT *T )t+1 t

g(P ,T ) = $  +   I   T     S)))))))))Q  t t 0 t+1

   T   I  P(dT *T )t+1 t+1 t

Tt+1

and the last equality assumes that the function giving the

probability of survival, P =P (T (k ,a ),T ), is invertible fort t t+1 t+1 t+1 t

almost every T , allowing us to write T (@) as a function of Pt t+1 t

and T .t

Now note that (12) and (11) together imply that

y !$ l  = $ a  + $ k  + g(P ,N !$ a !$ k ) + >  + 0 (13)t+1 l t+1 a t+1 k t+1 t t a t k t t+1 t+1
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where,

>  = T  ! E[T *T , P =1] .t+1 t+1 t+1 t t+1

Equation (13) helps clarify two points; why we need the

first stage estimation algorithm, and why we need an estimate of

T (in addition to P) to make the selection correction.  First

note that the difference between T  and its expectationt+1

conditional on past history (including T ) and survival, that ist

> , is mean independent of both k  and a  (since both theset+1 t+1 t+1

variables are known functions of variables available at the

beginning of the period), but not of l  (since labor can adjustt+1

to realizations in current productivity).  Use of the estimate of

$  from the first stage allows us to remove this simultaneityl

problem in the choice of labor by taking that variable over to

the left hand side of the estimating equation.  Second note that

the exit probability depends on both T  and on T (@) (whicht t+1

varies across firms).  As a result firms with the same exit

probabilities can have different expectations of T  conditionalt+1

on survival.

We turn now to a brief description of the details needed to

actually implement the estimation of the system given by (9),

(11), and (13).  The reader who is not interested in these

details can turn directly to our discussion of Table 6 (bottom of

page 26) where our empirical results are described.

Equation (10) is an example of one of the earliest
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semiparametric regression models.  It has been analyzed using

both kernel (Robinson, 1988) and series (Andrews, 1990a and

Newey, 1991b) estimators of N (@) and, subject to regularityt

conditions, the resulting estimators of $  have the same limitingl

distribution.  For simplicity, we use a polynomial series

estimator for N (@).  That is we project y  on l  and a polynomialt t t

in the triple (i ,a ,k ).  The empirical results presented heret t t

use a fourth order polynomial (with a full set of interactions)

to approximate the N (@) function, but there was almost no changet

in either the estimates of the coefficients of interest, or the

minimand, when we went from a third to a fourth order

approximation.  Also, since the investment function, and hence

N (@), should differ with changes in market structure (seet

equation 6 above), we estimated different polynomials for each of

the four regulatory periods (1974-77, 1978-80, 1981-83, and 1984-

86; see the discussion in section I)

Next we consider the estimation of the selection equation in

(12), the equation giving the probability of survival as a

function of (i ,a ,k ).  Here we use both a series and a kernelt t t

estimator of the function determining the survival probability

and then compare the results.  The series approximation was

constructed by using a polynomial series in (i ,a ,k ) ast t t

regressors in a probit estimation algorithm (the formula the

computer uses to compute the normal distribution is a series

approximation to the true distribution; so this gives us a series



      Whenever we use the bias reducing kernels in Bierens, 1987, we use a diagonal S with the inverse13

of the variance of the regressors as the diagonal elements, choose a bandwidth by cross-validation, and use a
degree of bias reduction of four.  Standard normal kernels used a diagonal covariance matrix with the inverse of
the variance of the regressors as the diagonal elements, and a bandwidth of one.
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composed with a series as our approximating function).  Again we

used a fourth order polynomial in (i ,a ,k ) with a full set oft t t

interactions, and again there was no change in the fit going from

the third to the fourth order.  The kernel results that we

present here use the bias reducing normal based kernels in

Bierens (1987), though the parameter estimates were almost

identical when we used a standard normal kernel.   Again, since13

the model implies that both the stopping rule and the investment

equation change with market structure, we ran both the kernel and

the series estimator twice; once allowing for different selection

equations in each of the four different regulatory periods, and

once not.

Table 5 provides the correlation coefficients between P ,t+1

the indicator variable for survival in period t+1 conditional on

survival in period t, and the different estimates of the survival

probabilities.  Two points come out clearly from the table. 

First, the kernel estimator provides predictions (PHAT1 and

PHAT2) which fit better than the series estimator (PHAT3 and

PHAT4).  Second, the fits are quite a bit better when we allow

for different stopping rules and different investment functions

in the four different regulatory regimes (compare PHAT2 to PHAT1,

or in the series case, PHAT4 to PHAT3).  Consequently we use
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PHAT2, the kernel estimates that allow for differences in the

selection function in the different regulatory periods, in the

analysis that follows.

Table 5 :

Correlation Coefficients between Various Predicted
 Survival Probabilities and Pt+1

Pt+1 PHAT1 PHAT2 PHAT3 PHAT4

Pt+1 1.00 .285 .350 .102 .218

PHAT1 .285 1.00 .671 .398 .324

PHAT2 .350 .671 1.00 .215 .583

PHAT3 .102 .398 .215 1.00 .483

PHAT4 .218 .324 .583 .483 1.00

Notes:
(1) P  is a 0,1 random variable that takes the value 0t+1

when a plant closes.

(2) PHAT1 and PHAT2 are the kernel estimates.  PHAT1 is
estimated over the entire data set together, and PHAT2
is estimated separately for the four time periods,
1974-1977, 1978-1980, 1981-1983, and 1984-1986.

(3) PHAT3 and PHAT4 are the probit estimates.  PHAT3 has no
time dummies, and PHAT4 is estimated with time period
dummies corresponding to the time periods in note (2),
and these dummies are interacted with i , k , and a .t t t

The third (and final) step of the estimation procedure takes

the estimates of $ , N , and P  from the first two steps,1 t t

substitutes them into equation (13) for the true $ , N , and P ,l t t

and then obtains estimates of $ , $ , and the g(@) function bya k
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(15)

(16)

minimizing the sum of squared residuals in the resulting

equation.  Here we also try both a series and a kernel estimator

of the unknown function g(P ,h ) function.  Recall that it is Nt t t

that we estimate, and h  = N  ! $ a  ! $ k , so that the values oft t a t k t

the regressors that determine g(@) depend upon the values of the

parameters of interest. 

For the series estimator we used a fourth order polynomial

expansion in (h ,P ) (and again there was almost no difference int t

either the sum of squares, or in the coefficients of interest,

when we went from the third to the fourth order approximation). 

Thus the series estimator is obtained by running nonlinear least

squares on the equation

with,

N  and b  are taken from the estimates of equation (9), and P  is^ ^
t 1 t

taken from equation (11).

The kernel results were obtained by forming kernel estimates

of the regression of

y  ! b l  ! $ a  ! $ kt+1 l t+1 a t+1 k t+1

on the regressors

P  and h  = N  ! $ a  ! $ k^ ^ ^
t t t a t k t



      The estimation procedure here was computationally more burdensome as the kernel had to be re-14

evaluated each time we needed to evaluate the objective function at a different parameter vector.  As a result we
chose the bandwidth by cross validation at the estimate of the parameter vector obtained from the series
estimation procedure, and held the bandwidth fixed at that value thereafter.
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for different values of ($ , $ ), and then using a nonlineara k

search routine to find the value of this parameter vector that

minimized the sum of squared residuals from this regression. 

Again the results presented here use the bias reducing kernels in

Bierens (1987) (though we have also used a standard normal kernel

with little difference in the resulting coefficient estimates).14

Finally the results indicate that a linear trend

(representing disembodied technical change) was significant, so

we included a time trend in the production function in (10), and

carried it through the entire estimation procedure.

A note on the properties of these estimators are in order

before proceeding.  Pakes and Olley (1991) provide a set of

conditions on h (@), p (@), g (@), and the distribution of the data,t t t

that insure that when we use the kernel estimator of g(@) in

equation (13) we obtain consistent and asymptotically normal

estimators of the capital, age, and time coefficients (it adapts

and extends previous results by Newey, 1991b, and Andrews, 1990b,

to cover problems which require estimates of nonparametric

functions which are indexed by either other nonparametric

functions, or by the parameters of interest).  Appendix 2 of this

paper uses the results in Pakes and Olley (1991) to obtain a

formula for a consistent estimator of the covariance matrix of
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our parameters.  We do not currently know of a theorem that

insures consistency and asymptotic normality when a series

estimator is used for g(@) in equation (13).  On the other hand,

we would find it surprising if the series estimator did not have

the same properties as the kernel estimator, and it is much

easier to compute.

The results of the alternative three step estimation

procedures, together with some other estimates of the production

function coefficients, are provided in Table 6.  Columns 1 and 2

obtain their estimates from the subset of data set that contains

only those plants that were active  throughout the entire sample

period.  That is, these columns use the traditional "balanced

panel".  Column 1 provides the OLS estimates from the balanced

panel, while Column 2 provides the within estimates (the

estimates from a fixed effects model which uses deviations from

plant specific means as data in a least squares estimation

procedure).  Columns 3 to 10 use the "full" sample; this sample

keeps plants that eventually drop out for all periods in which

they are active, and introduces new entrants as they appear. 

Column 3 provides the OLS estimates from the full sample, Column

4 provides the within estimates, and column 5 adds investment to

the right hand side variables and reruns the OLS procedure. 

Columns 6 and 7 make partial corrections to the OLS procedure

(the first for selection, and the second for the serially

correlated unobserved state variable; see below).  Columns 8 to
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10 provide different versions of our three step estimation

procedure.

The first point to note from the table is that the full

sample contains over two and a half times the number of

observations in the balanced panel.  That is, the selection

criteria that is implicit in using a balanced panel throws out 60

to 70 percent of the observations in the full sample.  The fact

that these fractions are so large, together with the theoretical

discussion which implied that the selection process should

generate very particular biases in the estimates of the

production function coefficients, will help clarify some of the

anomalies generated by the balanced panel.
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Table 6: Alternative Estimates of Production Function Parameters1

(standard errors in parentheses)

Sample Balanced Panel Full Sample3,4

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Nonparametric PT

Estimation
Procedure

Total Within Total Within OLS Only P Only h Normal PT Series Kernel

Labor .869
(.038)

.773
(.050)

.695
(.019)

.65
(.025)

.63
(.02)

.615
(.027)

Capital .163
(.033)

.054
(.048)

.308
(.017)

.14
(.025)

.23
(.02)

.37
(.02)

.29
(.03)

.292
(.073)

.32
(.035)

.35
(.045)

Age .001
(.003)

-.010
(.016)

-.0048
(.0016)

-.004
(.002)

-.002
(.002)

-.006
(.002)

.001
(.005)

-.0025
(.010)

-.00
(.004)

.01
(.014)

Time .025
(.006)

.047
(.016)

.023
(.004)

.023
(.005)

.02
(.004)

.03
(.005)

.005
(.01)

.023
(.002)

.035
(.019)

.04
(.038)

Investment - - - - .13
(.01)

- - - - -

Other
Variables
Present

- - - - - Powers
of P

Powers
of h

Mill's
Ratio
and h

Full
Polynomial
in P and h

Kernel
in

P and h

SSE
(Final

equation)

- - - - - 619.6 587.8 593.2 580.8 553.7

# Obs.2 886 886 2397 2397 2397 1603 1603 1603 1603 1603
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Notes for Table 6:

(1) The dependent variable in columns 1 to 4 is the log of value added, while in columns 6 to 10, the  dependent variable is log(va) ! b *log(labor).1

(2) The number of observations in the balanced panels of regressions 1 and 2 are the observations for those plants that have continuous data over the
period, with zero investment observations removed.  Similarly, the 2397 observations use in columns 3,4, and 5 are all observations in the full
sample except those with zero investment.  Approximately 8% of the full data set had observations with zero investment.  Columns 6 to 10 have
fewer observations due to the fact that the sampling procedures for the ASM forced us to drop observations in years 1978, 1983, and the last year,
1986.  See note 3.

(3) The number of observations in the last five columns decreases to 1603 both because we needed lagged values of some of the independent variables
in estimation, and because, due to the sampling design for the data, we could not us all the data in the last year of the rotating five-year panels that
make up the Annual Survey of Manufactures.  This is because we did not want to mistake missing data for some of the plants as exit, when in fact it
is the result of not being sampled for the next five-year panel.  To check that the estimates in columns 3,4, and 5 are not simply the result of the
sample, we ran the same estimating equations on the 1603 plant sample and got almost identical results.

(4) Consult the text for details of the estimation algorithm leading up to columns 6 to 10.



      We will not focus on either the age or the time coefficients in what follows since, though their15

values are generally consistent with our expectations, they are never estimated with much precision.
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The estimates in columns 1 and 2 are what we have come to

expect from production function estimates from balanced panels. 

The labor coefficient is higher than we would expect for the

elasticity of output with respect to labor (certainly higher than

the share of labor in total cost which is about .65 in this

data), while the capital coefficient is lower than we would

expect (it almost disappears in estimates which use the "within"

dimension, see column 2).15

Recall that we had two reasons for worrying about biases in

these estimates.  First endogeneity of the input choices should

lead to a positive correlation between the inputs and the

unobserved productivity term ( a problem which is likely to be

more severe the more variable the input and hence the easier to

adjust to current realizations of productivity).  This is the

traditional reason for believing there is a positive bias in

ordinary least squares estimate of the labor coefficient.  The

within estimator will only account for the bias to the extent

that the plant's productivity term is constant over time (and

recall that this is an industry that underwent major

restructuring during the period under study).  Second, even

considering the 1972 cross section as the universe for the

subsequent analysis, by taking the balanced panel we are only

keeping those firms that did well enough to survive the entire
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period (recall that Table 4 indicated that this was under half of

the plants that were active in 1972).  Since firms with larger

capital stocks will survive on the basis of lower productivity

realizations, selecting on survival generates a negative

correlation between the disturbance term in the selected sample

and capital.

By going to the full sample we expect to eliminate much of

the selection problem, but not necessarily the problems generated

by the endogeneity of the input choices.  Columns 3 and 4 provide

the OLS and within estimates on the full sample.  The simple act

of adding back in the plants that were active during only part of

the sample period almost doubles the capital coefficient and

pushes the labor coefficient down by about 20% (and this is true

whether we compare the total or the within columns).  Of course,

both the column 3 and 4 coefficients should still be biased by

both selection and endogeneity.  In particular since the within

column uses only changes over time and has to discard those

plant-year changes in productivity that induce the plant to close

down, one might expect it still to contain a large negative bias

in the capital coefficient generated by selection; whereas the

total column makes no attempt at all to control for firm specific

differences in productivity, so we might expect it still to

contain a large positive bias in the labor coefficient.

More formally, to account for the positive bias in the labor

coefficient in column 3, we need to substitute a polynomial
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expansion in the triple (i ,a ,k ) for T  in equation (7) and tot t t t

re-estimate the equation.  Column 5 adds only investment to the

list of regressors in column 3.  If the polynomial needed for Tt

were both linear and did not require interactions with time for

the different regulatory periods, the estimate of the labor

coefficient in column 5 would be consistent.  The capital and age

coefficients, however, would confound the effect the effect of

capital and age on output with their effect on investment and

hence have no direct interpretation.  There are two points to

note from the estimates in column 5.  First the investment

coefficient is highly significant, indicating that there is

indeed likely to be a simultaneity bias in the estimates of

column 3.  Second, as predicted by the theory, the labor

coefficient goes down again, this time by another 10%.

The labor coefficient from equation (10), the equation that

used a fourth order polynomial expansion in (i ,a ,k ) whoset t t

coefficients were allowed to vary over the four regulatory

periods to account for T , was .615 (.027) (not very differentt

from the coefficient from column 5, and between 10 and 15% lower

than the OLS coefficient on the full sample).  Columns 6 to 10

use this coefficient, the implied estimate of T , and thet

estimate of P  from the selection equation (11), to obtain thet

estimates of the capital, age, and time coefficients.

Column 6 regresses y  ! .615l  on age, capital, time, andt+1 t+1

a polynomial in the estimate of the selection probability.  If
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there were no serial correlation in T , implying no endogeneityt

problem in this equation, use of the polynomial in the estimate

of the selection probability should correct for the selectivity

bias and generate consistent estimates of the coefficients of

interest.  On the other hand, if T is serially correlated, then

we would expect k  to be positively correlated with T ,t+1 t

producing a positive bias in the capital coefficient in this

column.  So we would expect this column to provide us with an

estimate of an upper bound to the capital coefficient.

Column 7 regresses y  ! .615l  on age, capital, time, andt+1 t+1

a polynomial in h , the estimate of T  that we get from the first^
t t

equation.  If firms could not exit, so that there were no

selectivity problem, then use of the polynomial in h  would^
t

correct for the endogeneity problem and produce consistent

estimates of the coefficients of interest.  Given that even

transitions on the full panel are selected for survival (though

this is only survival over a two, not thirteen, year period), and

the theory tells us that the selection process should generate a

negative bias in the capital coefficient, we expect this column

to provide an estimate of a lower bound for the capital

coefficient.

The estimates of the upper and lower bounds were,

respectively, .37(.02) and .29 (.03) (the standard errors of the

coefficients in these columns were obtained from a bootstrap

procedure).  The implied interval rules out both balanced panel
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estimates and the within estimates from the full sample, but

still leaves a fairly large range of possible values for the true

capital coefficient.  Note also that the fact that the value of

the minimand in column 7 is much lower than that in column 6

attests to the likely empirical importance of the serially

correlated unobserved state variable that h  proxies for.^
t

Column 8 provides a halfway mark between the generality of

our full model and a parametric alternative.  The consistency of

the estimates in this column require that P  be given by theT

parametric family

T  = D T  + >  ,  where >  - N(0,F )t+1 t t+1 t+1
2

and N(@) signifies a normal distribution.  Briefly, it uses the

probit estimates of the selection equation to obtain a

nonparametric estimate of the truncation point in that equation

and then notes that, given the normality assumptions, the

expectation of T  conditional on past history and survival willt+1

depend only on T  (estimated by h ) and Mill's ratio evaluated att t
^

the truncation point.  Columns 9 and 10 provide the series and

the kernel estimates of the version of our model which does not

restrict P .T

The first point to note is that all three of these

procedures produce estimates of the capital coefficients that are

between the upper and lower "bounds" for this coefficient given



      We have done a lot more analysis of these coefficients than is reported above, and this note16

reviews the other results.  The system was estimated using several different estimators for the nonparametric
components, and adding a trimming step to account for observations in low density regions.  None of the
alternative estimators generated much of a change in the coefficient estimates (the capital, age, and time
coefficients varied between .31 and .35, -.01 and .01, and .01 and .04 respectively).  There was one run,
however, in which the estimated standard errors doubled as a result of an outlier that was trimmed in the
trimming procedure.  In addition we ran systems in which multiplant firms had different investment and
stopping rules (we also tried differentiating by the number of plants), and investigated differences in estimates
over different subperiods of the panel.  The only significant (from a statistical point of view) change occurred
when we split the sample into three equally sized time intervals, and re-estimated the model in the first and last
of these.  The results provided evidence of an increase in the capital intensity of the industry over time, as the
OLS capital coefficient from the full subamples went from .27 (.03) to .34 (.03), and the estimates from the
bias reducing kernel version of our procedure went from .32 (.08) to .40 (.05).  Again these differences are
simply not large enough to make any substantial difference to the economic implications discussed in the next
section.
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in columns 6 and 7.  There is some evidence that the constraint

imposed by normality produces both a lower capital coefficient

and a significantly worse fit than the more general model, so we

shall disregard column 8 in what follows.  The other two

estimates are not much different from one another; and this is

true whether we use as our difference metric their estimated

standard errors or their empirical implications as discussed in

the next section (we have already done the empirical analysis of

productivity using both the column 9 and the column 10 estimates

with no significant difference in the results).   On the other16

hand both columns are quite different from the results of the

more traditional estimation procedures discussed earlier.

IV The Implications of Our Estimators on Productivity

This section of the paper uses our production function

estimates to construct measures of plant level productivity in

the telecommunications equipment industry and then analyzes
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changes in the distribution of this productivity measure between

1974 and 1987.  Our plant level productivity measure is

calculated as

p  = y  ! b l  ! b k  ! b a  ,it it l it k it a it

where the b's are taken from column 10 in Table 6.

We begin with the aggregate industry productivity.  Table 7

compares two measures of aggregate industry productivity growth

between 1975 and 1987.  We calculate our aggregate measure (P1 in

the first column) as the share-weighted average of our plant-

level productivity measure, using plant-level shares of the full

sample as weights.    P2 in column 2 provides the productivity

growth rates derived in an analogous way but using the production

function coefficient estimates and the shares of output from the

balanced panel (from column 1 in Table 6).  Column 3 sums the

difference between P1 and P2 from the beginning of the sample

period, while column 4 provides the BLS's measure of growth in

aggregate manufacturing productivity (P3).  Figure 1 normalizes

productivity to equal 1 in 1974, and then plots the levels of our

measure, and of the measure obtained from the balanced panel,

over the period.  The difference between the two curves in this

figure is column 3 of Table 7.
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Table 7:

Industry Productivity Growth Rates

Year 1
P1

2
P2

3
3(P1 -t
P2 )t

4
P3

1975 -.127 -.113 -.014 -.014

1976 -.017 -.030 -.001  .052

1977  .070  .073 -.004  .032

1978  .084  .089 -.009  .016

1979  .012  .005 -.002 -.007

1980  .060  .090 -.032 -.023

1981  -.001  -.003 -.036  .011

1982  .002  .017 -.051 -.005

1983 -.059 -.051 -.059  .059

1984  .044  .032 -.041  .068

1985  .047  .084 -.094  .038

1986 -.021 -.024 -.091  .027

1987  .009  .043 -.125  .034

Column 1 - output weighted average from entire data set
using our corrected estimates

Column 2 - output weighted average for balanced panel
using balanced panel estimates

Column 4 - all of manufacturing  (source: Bureau of
Labor Statistics)
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See text for additional detail.
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We begin with a comparison of P1 to P2.  Column 3 makes it

clear that P1 drops below P2 immediately and remains below it

throughout the sample period.  Indeed the annual growth rate of

P2 (1.63%) over the period as a whole is over double the growth

rate of P1 (.79%).  Recalling that the balanced panel excludes

those plants which exit during the sample period, a selection

which our theory tells us should delete precisely those plants

with low productivity growth, the fact that P1 is lower than P2

should not be surprising.  The other difference between the two

samples is that the balanced panel excludes new entrants. 

Empirically, new entrants tended to be smaller plants with lower

productivity than the average productivity of continuing

establishments (but higher productivities than those plants which

exit).  So the difference in the treatment of new entrants

between the two panels reinforces the difference between the

productivity measures that is induced by the difference in the

treatment of those who exit.

Note that this reasoning leads us to expect particularly

large differences between the productivity measures in periods

when there is disproportionate amounts of entry and exit.  Column

3 shows that the difference between P1 and P2 takes a jump upward

between 1979 and 1980, just after the registration and

certification program, and then another discrete jump in 1985,

just after divestiture.  These were precisely the years where

there was likely to be disproportionate amounts of entry and exit
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(see Tables 3 and 4 above, and Table 11 below).  Indeed the

average annual difference between P1 and P2 in the period after

divestiture was 2.2% (3.4% versus 1.2%), almost two and a half

times the average annual difference between P1 and P2 over the

entire sample period.  The lesson here is that aggregate

productivity calculations based on balanced panels can generate

large positive biases during periods when an industry is

undergoing a significant amount of restructuring.

The extent to which the movements in P1 can be accounted for

by historical changes in the structure of the telecommunications

equipment industry is quite striking.  Notice first the surges in

productivity that follow both the registration and certification

program in 1977 and 1978, and the divestiture in 1984.  Also the

growth rate in productivity is practically zero in 1982, and

negative from 1982 to 1983.  Given that the Consent Decree

announcing divestiture was signed in January 1982, this period

was undoubtedly a time of reorganization and restructuring for

the industry as a whole.  The negative growth in productivity

probably reflects the cost of reorganization among incumbents and

the time it takes new entrants to settle into production.

Column 4 provides annual growth rates in productivity for

all of manufacturing.  Note that the two periods of high growth

rates in the telecommunications equipment industry, 1977-1978 and

1984-1985, are not reflected in the data on aggregate

manufacturing.  The two periods of telecommunications
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productivity growth are a result of factors that are specific to

that industry (eg., regulatory changes) and are not related to

trends in overall manufacturing.  This comes through even more

clearly in Table 8, where we provide the correlation coefficients

between the three growth rate series in Table 7.  The growth rate

of productivity in the telecommunications equipment industry has

an r  of almost zero with the growth rate for manufacturing as a2

whole.

Table 8

r  's for the Growth Rates reported in2

Table 7

1 2 3

1 1.00 .916 .008

2 .914 1.00 .001

3 .008 .001 1.00

We now delve deeper into the determinants of industry

productivity.  We first ask about the efficiency of the output

allocation among plants in the industry.  One can ask this

question either conditional on the extant distribution of fixed

factors (age, capital, and productivity), or unconditionally.  We

begin by considering the efficiency of the allocation conditional

on the distribution of fixed factors.  To analyze this issue we

introduce a variable cost efficiency index.  The index is defined
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(15)

(16)

as the ratio of the minimum variable cost of producing industry

output, given the current distribution of fixed factors (age,

capital, and productivity), to the actual variable cost of

producing industry output.  Firms are assumed to minimize

variable cost given their fixed factors, so their actual variable

cost of production is calculated as

where p  is productivity as defined at the beginning of thisi

section.  The minimum total variable cost of producing industry

output is calculated as the solution to

The static efficiency index is calculated as the ratio of (16) to

the sum of (15) across plants.  The results from this calculation

are presented in Table 9 where we have averaged the annual static

cost efficiency index over several sub-periods.
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Table 9 :  Variable Cost Efficiency

(minimum cost of production divided by actual cost of
production)

Years Total Interfirm Intrafirm

1974-1977 .77 .85 .90

1978-1983 .67 .80 .84

1984-1986 .71 .79 .90

Mean .72 .81 .88

Table 9 actually goes one step further than this.  It

decomposes the static variable cost index into two terms; a term

providing a measure of the efficiency of allocation of output

among plants within a firm (the intra firm index), and a term

providing a measure of the efficiency of the allocation of output

between firms (the inter firm index).  Specifically the intra

firm index is the ratio of the variable cost of production one

would obtain if one allocated the actual firms' output

efficiently among their own plants to the actual cost of

production (obtained from 15).  The inter firm component is the

ratio of the minimum cost of production obtained from (16) to the

cost of production obtained from efficiently allocating the

existing firm distribution of output among the plants in the

alternative firms (to the numerator of the intra firm index). 

Thus the product of the inter firm and the intra firm indices

must equal the total index.
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The total column of Table 9 shows that, not surprisingly,

the static efficiency index declined in the 1978-1983 period, the

period when the industry was undergoing the restructuring induced

by the changes in the regulator environment.  It did increase

again after deregulation, but not to the level it had achieved in

the pre 1978 period.  All movements in the static efficiency

index are caused by movements in the inter firm component of the

index, the intra firm component was essentially constant at the

high level of .9 throughout the period.

The more competitive structure that emerged after

deregulation seems to have generated an inter firm allocation of

output that is less efficient, conditional on both the total

output produced by the industry and on the existing joint

distribution of fixed variables, than the output allocation prior

to deregulation.  The lesson here is that more concentrated

industry structures may well allocate output among existing

plants in a more cost effective manner.  The benefits from

competition come from either less restrictive output practices, a

reallocation of fixed factors towards more productive

enterprises, or increases in average productivity growth.  We now

turn to an investigation of the latter two possibilities.

Recall that while the static variable cost efficiency index

seems to have fallen after deregulation, the aggregate industry

productivity figures increased following both periods of

regulatory change.  To see what is behind this set of results it
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(18)

(19)

is helpful to decompose the productivity figures in a slightly

different way.  Recall that our measure of industry productivity

is a weighted average of plant-level productivity, with shares of

industry output as weights, i.e.,

where p  is industry productivity at time t, p  is plant levelt it

productivity, and s  is plant i's share of output at time t. it

Now decompose p  into a sum of two terms as followst

where 

and &p  and &s  represent the unweighted mean productivity and thet t

unweighted mean share, respectively.

Table 10 presents data on the three terms from equation

(18).  Column 1 is the left hand side of the equation; industry

productivity constructed as a weighted average of plant-level

productivities.  Column 2 is the unweighted average of plant-

level productivity, &p .  Column 3 provides the second term on thet
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right hand side of (18), the sample covariance between

productivity and output.  The larger this variance, the higher

the share of output that goes to more productive firms and the

higher is industry productivity.  Finally, the fourth column of

Table 10 gives the correlation coefficient between plant-level

capital and plant-level productivity.

Table 10

Year 1 2 3 4

1974 1.00  .91 .09  -.059

1975 .87  .81 .07  -.092

1976 .86  .78 .08 -.106

1977 .92  .86 .06  -.070

1978 1.00  .91 .09  -.036

1979 1.01  .96 .05  -.030

1980 1.07  .96 .11  -.008

1981 1.07  .90 .17  .037

1982 1.07  .93 .14  .010

1983 1.00  .92 .09  -.056

1984 1.05  .97 .08  -.072

1985 1.10  .89 .21  .036

1986 1.08  .90 .17  .050

1987 1.08  .86 .23  .120

The table helps us separate out the factors underlying the

increase in productivity in column 1.  &p  has not changed allt
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that much since 1979, but there has been a reallocation of output

from less productive to more productive plants.  It is this

reallocation output, and not any increase in average

productivity, that is driving the increase in productivity at the

industry level.  From the analysis of the static cost efficiency

index above, we know that this reallocation of output to more

productive plants is not a result of a more efficient allocation

of variable factors of production conditional on the existing

distribution of fixed factors.  So it should be a result of a

reallocation of capital towards the more productive plants.  A

complete analysis of precisely how this happened and of the

effect of the various policy and environmental changes on that

process would require us to fill in the details of the dynamic

general equilibrium model that lies behind the adjustment process

that occurred in this industry ! a task beyond the scope of this

paper.  We can, however, provide some reduced form evidence on

the importance and the implications of the capital reallocation

process.

Column 4 of Table 10 provides the correlation between

capital and productivity.  It has increased dramatically since

the Consent Decree, and it increased substantially following the

earlier regulatory changes also.  In fact the only two years in

which there was a perceptible drop in the capital-productivity

correlation were 1983-84, the years when the adjustment to

deregulation must have been greatest.
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One can also see the impact of the reallocation of capital

towards more productive plants in the analysis of exit behavior. 

The stopping rule that comes out of the dynamic behavioral model

(equation 5) implies that whether or not a firm shuts down is a

function of its productivity, capital stock, and age.  The

nonparametric estimation procedure uses this fact to derive the

survival probabilities, but treats these probabilities as

nuisance parameters, never examining them for their independent

economic interest.  Table 11 provides a simple probit analysis of

survival probabilities with our estimates of productivity,

capital, and age, as well as time dummies, as right hand side

variables.  The probits have the exit probability negatively

related to both the firm's capital stock, and to the firm's

productivity (though, as in the production function, age is

insignificant and sometimes the wrong sign), with productivity

being the most significant of the two variables.  Also, there

seems to be a clear effect of deregulation on the probability of

exit.  Conditional on any triple for the state variable, that

probability seems to have gone up after 1980.  So one mechanism

for the reallocation of capital that facilitated the increase in

aggregate productivity that accompanied deregulation seems to

have been an increase in the rate of shutdown of unproductive

plants.
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Table 11

Probit Models of Exit Probabilities*

(standard errors in parentheses)

1 2 3

Intercept -1.22 (.14) -.613 (.260) -.556
(.266)

Productivity -.252
(.063)

-.234 (.064) -.240
(.065)

Age  .007 (.006) -.008
(.006)

Capital -.081 (.031) -.095
(.032)

D2 -.353
(.198)

D3  .114
(.144)

D4  .469
(.138)

# Obs 1900 1900 1900

Log
Likelihood

-329.90 -326.28 -314.74

* The dummy variables are defined as follows:
Base period is 1974-1977,
D2 = 1 for years 1978 to 1980, 0 otherwise
D3 = 1 for years 1981 to 1983, 0 otherwise
D4 = 1 for years 1984 to 1986, 0 otherwise.

Our results indicate that the changes that occurred in the

telecommunications industry in this period improved the

performance of the telecommunications equipment industry by

inducing a reallocation of capital from less to more productive
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plants.  Note that since this reallocation process seems to be

greatly facilitated by entry and exit, an important part of it

would not be picked up from the analysis of balanced panels (much

less aggregate data).  Nevertheless, it is this reallocation of

capital, rather than some increase in either the efficiency of

the allocation of variable inputs, or in average productivity,

that seems to be behind the increase in productivity that

followed the deregulation of the telecommunications equipment

industry.

VI CONCLUDING CAVEATS

We conclude with two related caveats.  First we would like

to emphasize that it is still too early to assess the full impact

of deregulation on productivity in the telecommunications

equipment industry.  Our analysis suggests that the change in

regulatory structure was followed by an increase in industry

productivity generated by a reallocation of capital and a shift

in production towards more productive plants.  However, the long

term question of the effect of the divestiture on productivity

will also have to come to terms with its effect on R&D activity. 

Partly as a result of the tremendous success of research efforts

at Bell Labs, AT&T's research subsidiary, the telecommunications

network in the United States is the most sophisticated in the

world.  Our estimates indicate that there has not been an

increase in average productivity since divestiture.  However any
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change in productivity that resulted from a change in the

structure of R&D in the industry after deregulation would

probably not manifest itself in the data until after 1987.  On

this point we should note that when we take the RBOC's together

with AT&T their joint R&D expenditures and employment after

divestiture are not lower than the predivestiture levels of AT&T

(Noll, 1987).  On the other hand it is still too early to know

how the changes in the structure of the industry has affected the

productivity of those R&D expenditures.

The second point is related, though more theoretical.  What

seems to be clear from the data is that certain enterprises

generate more sales for given amounts of capital and labor

expenditures than others, and that differences in this sales

generating ability (which we call productivity) among plants are

highly serially correlated over time.  This implies that

there is an unobserved, serially correlated, state variable

that is a determinant of both survival probabilities and input

choices.

The way the model of Sections II and III deals with this

unobserved, serially correlated, state variable is to assume that

there is a one-to-one relationship between it and investment

conditional on the observed state variables of the problem (at

least on the subset of the data with i >0).  A more general modelt

than the one outlined here, say one that allowed for a separate

effect of the outcome of an R&D process on profits, and hence on
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the investment decision, would be unlikely to generate such an

invertibility condition without incorporating information on

additional observables.  We stopped where we did because of a

combination of data availability and the fact that the framework

presented here seemed rich enough to capture the nature of the

restructuring that occurred in the telecommunications equipment

industry during the period of our study.  We do not doubt,

however, that extensions to (or modifications of) our techniques

may be necessary in order to come to grips with either different

questions or different data sets.

The conceptual point we would like to emphasize is not that

our solution ought always be used.  Rather it is that the

solution that is used to study changes in the performance of an

industry should take into account the fact that different

enterprises are differentially efficient in producing sales, and

that though these efficiency differences do vary over time, they

are highly serially correlated.  A result of this serial

correlation is that the efficiency differences themselves become

determinants of the rates of expansion (or contraction) of

plants.  This makes them an integral part of the process by which

markets adjust to changes in their environment.  In our case it

was differences in the extent to which this adjustment took place

pre and post deregulation that was the major determinant of the

pre and post deregulation differences in industry performance.
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Appendix 1: The Data

The data be used in this study is an extract drawn from the

Longitudinal Research Database (LRD) maintained at the Center for

Economic Studies at the Bureau of the Census.  The LRD contains

all the data for manufacturing establishments collected by the

Census of Manufactures in 1963, 1967, 1972, 1977, 1982, and 1987

, and by the Annual Survey of Manufactures for non-Census years

from 1973 to 1986.  The data is collected at the establishment

level and includes detailed information on the inputs and output

that characterize the production process.  A more detailed

description of the data and how we constructed the variables used

in this analysis can be found in Olley (1991).

Telecommunications networks are composed of three broad

categories of equipment.  Terminal equipment is equipment that

terminates a telephone wire at a customer's premises and includes

such products as telephone sets, key telephone sets, facsimile

machines, and modems.  Transmission equipment, which carries the

signal between terminal stations and switching centers, includes

coaxial cable, microwave radio equipment, optical fiber, and

communications satellites.  Finally, switching equipment, which

is the heart of the network, links the terminals of the

telecommunications system.  The main types of switching equipment

are private branch exchanges (PBX) and central office switching

centers.  This study focuses on all three types of equipment with
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the exception of transmission cable.  Thus we do not include

plants that produce the various types of transmission media such

as copper wire, coaxial cable, or glass fibers.

In terms of the classification system used by the U.S.

Bureau of the Census, the telecommunications equipment industry

is made up primarily of those plants that are classified in SIC

industry 3661, Telephone and Telegraph Apparatus.  The three 5-

digit product classes within SIC 3661 are 36611, switching and

switchboard equipment, 36613, carrier line equipment, and 36614,

other telephone and telegraph wire apparatus.  This last 5-digit

product class includes such products as telephone sets, key

telephone sets, and telephone answering devices.  In addition, a

subset of the plants from SIC 3663, Radio and Television

Communications Equipment, are included in the analysis.

The subset of plants added from industry 3663 are plants

that produce products within the 5-digit product class 36631,

communications systems and equipment, except broadcast.  The

Bureau of the Census classifies fiber optics communication

equipment, microwave communication equipment, facsimile

communication equipment, and carrier line equipment, n.e.c. (not

elsewhere classified) in the product class 36631, but we wished

to include plants that produce these products in the analysis of

the telecommunications equipment industry.  However, the product

class 36631 also includes military space satellites, amateur

radio communications equipment, and other products that we felt
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should be excluded from the data set.  Therefore, we had to take

care to eliminate from the data set those plants that primarily

produce products outside our definition of the industry.

Though our choice of product classes is as close as possible

to the definition of the product market as we could get, it

should be pointed out that, since we have pulled together data

for plants in different four-digit SIC industries, comparison

with published aggregates will be limited.

We now describe the variables used in the analysis.  Unless

otherwise specified, all variables are measured at the plant

level and are taken from the Longitudinal Research Database

maintained at the Center for Economic Studies at the Bureau of

the Census.

Value added is defined to be total shipments, adjusted for

changes in inventories, minus the cost of materials.  Real value

added is constructed by deflating output by a 4-digit industry

output deflator and deflating the cost of materials by a 4-digit

materials deflator.  The deflators are taken from the PCS

database as extended by Wayne Gray (1989).  The labor variable is

an hours variable constructed by taking the total compensation

for labor, including all supplemental labor costs, and dividing

the total by the production worker wage rate at the given plant.

The capital measure used in the regression analysis is

constructed using a perpetual inventory method, K  = (1!*)K  +t+1 t

I .  Since the capital data in the LRD is detailed enough tot
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allow one to distinguish between buildings and equipment, all

calculations of the capital stock are done separately for

buildings and equipment.  Real capital is obtained by deflating

investment by a 4-digit industry new investment deflator taken

from the extended PCS data set.  As suggested by Hulten and

Wykoff (1981) buildings are depreciated at a rate of .0361, and

equipment at a rate of .1179.

In order to construct the capital series using the perpetual

inventory method, we had to address two other issues.  We needed

an initial capital stock, and we wanted to utilize the LRD data

on rentals and used equipment expenditures.  The method of

dealing with the initial condition problem differed with the

information available on the plant.  If the plant is first

observed in an ASM year we treated the plant as a new entry, and

assumed the entire book value of capital was put in place in the

previous year.  If a plant is first observed in a census year, it

could have opened any time between the previous census and the

first observed census.  As a result we calculated two estimates

of capital; the first assumes that the plant is new in the first

observed census year, and the second assumes that the entire book

value was put in place in the previous census year.  The initial

capital stock used in the analysis was a simple average of these

two estimates.  For plants first observed in the first year of

the LRD (1963) we took the book value in that year to be correct.
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If a plant was renting capital, the rental value is

capitalized and added to current year capital stock.  The rental

data is capitalized using rental rates for all manufacturing

supplied by the Bureau of Labor Statistics.  Interestingly,

rentals seem to be more important for smaller plants than they

are for large plants.  Many small plants do not have any

buildings on their books and are renting their factory.  Many of

the plants also report purchases of used equipment.  In the

calculation of the capital stock, used equipment is deflated

using the new investment deflator and added to current capital. 

Finally, partly because of the sampling design, there were often

missing years on the plants.  We imputed the missing investment

data by averaging the actual investment in the year just before

the missing data with the investment in the year immediately

following the gap.  This allowed us to keep the historical

information on the plant's capital.
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Appendix 2: The Variance Covariance Matrix 
of the Parameter Estimates

This appendix provides a consistent estimator for the

variance covariance matrix of the estimator of the production

function coefficients.  It is based of the results in Pakes and

Olley (1991), which, in turn, extends previous work by Newey

(1991), and Andrews (1991b).  For more detail the reader should

consult those articles.

Let z be the vector of observables on a plant in the current

and the following period (with the understanding that the second

period values are zero if the plant liquidated in the second

year), xN=[k,a,t], and $N=[ $ , $ , $  ].  Then, denoting secondk a t

period values of a variable by a + subscript, for any estimate of

g=g(P,N-xN$), P=P(i,a,k), and N=N(i,a,k), define the vector of

functions

m(z, $, $ , g, P, N) = P [y !$ l !x N$!g(P,N!xN$)]{!x +[Mg(P,N!xN$)/MN]x} . (1)l + + l + + +

For a particular value of ( $ , g, P, N), say (b , g , P ,l l n n

N ), the estimation algorithm chooses its estimate of $, say b,n

by minimizing  2 n  3  m(z ,b,b ,g (P ,N !xNb) 2 , where 2x2=xNx. !1
i i l n n n

Now if

D(z, $, $ , g, P, N) = {!x +[Mg(P,N!xN$)/MN]x}{!x +[Mg(P,N!xN$)/MN]x}N , (2)l + +
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then it can be shown that at the true value of all of the

parameters,

D(z, $, $ , g, P, N) = E[Mm(z, $, $ , g, P, N)/M$ * J  , P =1].l l t t+1

Finally let

f (z, $, $ , g, P, N) = m(z, $, $ , g P, N)*
l l

+ P {!x +[Mg(P,N!x$)/MN]x{[y !$ l !x N$!g(N-xN$)]+ + + l + +

+ P {!x +[Mg(P,N!x$)/MN]x{[Mg(P,N!x$)/MP][P !P] (3)+ + +

+ P {!x +[Mg(P,N!x$)/MN]x{[Mg(P,N!x$)/MN][y!$ l!N]+ + l

+ C[y!$ l!N]{l!E[l*i,a,k]} ,l

where C=P l [y!$ l!N]/E{l!E[l*i,a,k]} .+ + l
2

The actual variance covariance matrix of the parameter

estimates is obtained by letting f=f !Ef , and setting* *

V( $, $ , g, P, N) = E[f(z, $, $ , g, P, N)f(z, $, $ , g, P, N)N], (4)l l l

and

D( $, $ , g, P, N) = E[D(z, $, $ , g, P, N)] (5)l l

and then computing

(DND) DVD(DND) ,!1 !1

where all functions are evaluated at the true value of the

parameters ( $, $ , g, P, N).  A consistent estimate of thel

variance covariance matrix is obtained by substituting (b, b ,l

g , P , N ) for ( $, $ , g, P, N) in equations (1) to (3),n n n l

computing the sample analogues to the expectations in (3), (4),

and (5), and substituting these into (6).

Note that if we were to ignore the last four terms in (3)

(set them equal to zero), then this variance covariance matrix
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would be identical to the variance covariance we would obtain if

we knew ( $, g, P, N), substituted there true values into the

definition of m(@) in (1), and set the resulting equation to

zero.  The last four terms in (3) provide adjustments for the

fact that we use estimators of g, P, N, and $ , rather than theirl

true values.
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